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Figure 1. Plot of the CD4/CD3H ratio from the thermolysis of 
Os(CO)4(CD3)2 in dodecane as a function of the rt-Ci2D26/"-Ci2H26 
ratio. 

lated to 162.5 0C when necessary) have been reported for 
known methyl radicals attacking C2H6/C2D6 (&H/&D = 5.6)17 

and for the attack of deuteriomethyl radicals on secondary H 
and D in propane (&H/&D = 5.2).18 Such isotope effects are 
known to be almost identical whether the reaction is conducted 
in solution or in the gas phase;19 they are also virtually inde­
pendent of the isotopic labeling of the methyl radical (-CD3 
Or-CH3).

17 

Although methane, via methyl radicals, is clearly the prin­
cipal product (from 0.8 to 1.2 equiv, depending upon condi­
tions) of the thermolysis of Os(CO)4(CH3)2, small amounts 
of other products are formed. Acetone (0.2 equiv) can be de­
tected from thermolysis in a sealed tube; the addition of 5.5 
equiv of triphenylphosphine increases this yield (to 0.7 equiv) 
and acetone becomes the principal product. It is possible that 
this acetone results from simple intramolecular reductive 
elimination, and that the increase represents the accelerating 
effect of an external nucleophile,20 but the dominance of the 
methyl radical path prevents investigation of this possibility: 
the acetone recovered from thermolysis of mixtures of 
Os(CO)4(CH3)2 and Os(CO)4(CDa)2 contains all possible 
combinations of hydrogen and deuterium. 

In the presence of Ph3P, as above, the principal inorganic 
product is Os(CO)3L2. Otherwise a number of clusters, un­
stable under the reaction conditions and therefore present in 
small steady-state concentrations, can be isolated in low yield,21 

along with some Os3(CO) j 2 . 
The fact that the primary process in the thermal decompo­

sition22 of Os(CO)4(CH3);) is Os-C bond cleavage contrasts 
with the smooth dinuclear elimination that we have observed 
in Os(CO)4H2

23 and Os(CO)4(H)CH3.1 Together these re­
sults prompt the hypothesis that dinuclear elimination can only 
occur when hydride ligands are present or available. The fact 
that dinuclear elimination does not occur with the dimethyl 
compound Os(CO)4(CH3)2 probably results from the inac­
cessibility of a methyl-bridged transition state—an inac­
cessibility also mirrored by the fact that methyl bridges be­
tween transition metals are extremely rare in stable com­
pounds.24 Os(CO)4(CH3)2, in short, represents a case where 
both simple intramolecular reductive elimination and dinuclear 
elimination are so energetically unfavorable that the only de­
composition pathway available under forcing conditions is 
metal-carbon bond homolysis. 
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Synthesis of a-Peroxylactones 
by Direct Oxygenation of Ketenes. 
Evidence for an Intermediate 

Sir: 

a-Peroxylactones possess inherent interest as high energy 
content molecules and importance as intermediates in chem-
iluminescent systems;1 yet useful synthetic methods for pre-
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Table I. Syntheses and Spectroscopic Properties of a-Peroxylactones 
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a-Peroxylactone IR, cm ' (solvent) NMR, 5™ s (m) % yield" (solvent) 

Dimethyl (2a) 

Diphenyl(2b) 
ten- Butyl (2c) 

Methylpropyl (2d) 

Phenylbutyl (2e) 
Bis(trifluoromethyl) (2f) 

1870(CS2) 

1870(CFCl3) 
1875 (CH2Cl2) 

1870(CH2Cl2) 

1860(CFCl3) 
1940(CH2Cl2) 

1.81 (s) 

1.10(s, 9H) 
5.48 (s, 1 H) 
1.04 (t, 3H) 
1.55 (m, 2H) 
1.73 (s, 3H) 
1.82 (m, 2H) 

7 (CH2Cl2) 
14 (CDCl3) 
40 (CFCl3) 
10(CFCl3) 
50 (CH2Cl2) 

20 (CH2Cl2) 

14(CFCl3) 
b (CH2Cl2) 

" Yields were based on initial ketene concentration, determined by quantitative NMR or IR of flash solutions. * Yield was too low to mea­
sure. 
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Figure 1. (a) Immediate room temperature infrared spectrum of flash 
distilled solution of dimethyl a-peroxylactone (2a) in CS2. (b) Infrared 
spectrum of sample after 20 min at room temperature. 

paring these compounds are quite limited in number and in 
scope.2 The reaction of ketenes with molecular oxygen (eq 1) 
appears to be a most straightforward route to a-peroxylac-
tones. Nevertheless, the literature indicates that reaction of 
singlet oxygen with ketenes does not yield a-peroxylactones3 

and that reaction of triplet oxygen with ketenes results in au-
toxidation and polymerization.4 On the other hand, the reac­
tion of triphenyl phosphite ozonide (TPPO) with diphenyl-
ketene produces a species capable of inducing thechemilumi-
nescence of anthracenes.5 The products of this reaction are 
benzophenone and (presumbably) benzilic acid polyester.5 It 
was concluded that diphenyl-a-peroxylactone is the precursor 
of benzophenone and an energy source for inducing observed 
chemiluminescence. However, this conclusion is weakened by 
the fact that the reaction products are very similar to those 
obtained from autoxidation of diphenylketene with air4 and 
the fact that numerous peroxy intermediates (e.g., polymeric 
peresters), which result from autoxidation, are also plausible 
energy sources for inducing chemiluminescence. 

We report here that (1) the reaction of ketenes with TPPO 
at low temperatures provides a facile entry to a-peroxylactones, 
(2) this reaction involves '02 as the reactive oxidizing species 
and does not result from direct reaction of TPPO and ketene 
or of reaction of triplet oxygen with ketene, and (3) an inter­
mediate (presumably a perepoxide or zwitterion) occurs as 
precursor to a-peroxylactone formation. 

The a-peroxylactones synthesized by eq 2 are listed in Table 
I. A typical method of preparation is that for dimethyl-a-
peroxylactone (2a, Ri = R2 = CH3). A CS2 solution (nitrogen 

R1R2C=C=C + O, 
1 

OO R'-H V 

R1R2C=C=O + (PhO),PQ, 
1 TPPO 

(1) 

(2) 

R X = C = O + (PIiO)PO, , 2 4 °_ > CH5OCCO5H (3) 

'o. 
CH3OH 

O. 
O+ ^ O 

R - C - > C < ^ and/or R—C—C 
v0 

R 

4, perepoxide 

R 
O 

R 
3 

CH, OH 

5, zwitterion 

v 0-0 
\ . inert i I x • R—C-C, (4) 

solvent I %. 

R ° 

purged) containing dimethylketene6 was added to a stirred, 
nitrogen purged CS2 solution of triphenyl phosphite ozonide,7-8 

the temperature of both solutions being maintained at 20 
to —25 0C throughout the addition. After maintenance of the 
reaction mixture at —20 0C for 1 h and distillation at ~—30 
to —40 0C (bath and column temperature) and ~0.1 mm, the 
distillate was shown by NMR and IR to contain acetone and 
dimethyl-a-peroxylactone (40% yield): 1H NMR (CDCl3, -40 
0C)S 1.81 (s): IR (CS2, 250C) 1870 cm-'. The acetone was 
removed by distillation at'—78 0C (0.05 mm). The resulting 
solutions of dimethylperoxylactone were found to contain no 
other impurities that were detectable by IR (see Figure 1) or 
NMR analysis. 

By a similar procedure diphenylperoxylactone (2b, Ri = R2 
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= Ph), /err-butylperoxylactone (2c, R1 = J-C4H9; R2 = H), 
methylpropylperoxylactone (2d, R1 = CH3; R2 = 
CH3CH2CH2), phenylbutylperoxylactone (2e, R1 = Ph; R2 
= CH3CH2CH2CH2), and bis(trifluoromethyl)peroxylactone 
(2f, R1 = R2 = CF3) were prepared. Although the formation 
of these a-peroxylactones by photooxygenation9 at ~—78 0C 
could be established by spectroscopy (characteristic IR ab­
sorption ~1880 cm-1), the yields were generally much lower10 

than those listed in Table I. 
In addition to the spectral evidence for the assigned struc­

tures, the chemistry of the compounds listed in Table I is also 
consistent with the a-peroxylactone structure. For example, 
warming of solution of dimethylperoxylactone results in the 
quantitative formation of CO2 and acetone. Furthermore, the 
thermolyzed solutions exhibit an intense chemiluminescence 
which was established as acetone phosphorescence.1' 

Given the structural assignments, let us now turn to the 
mechanism of reaction of ketenes with TPPO. Is there a direct, 
bimolecular reaction12 between a ketene and TPPO, or does 
the latter first decompose to release a reactive form of oxygen 
(or its equivalent)-which then reacts with the ketene? 

To test whether or not ketenes enter into a direct, bimolec­
ular reaction with the ozonide, the kinetics of decomposition 
of TPPO were determined. At —24 0C, the disappearance of 
TPPO is strictly first order and occurs at the same rate in the 
presence and absence of diphenylketene (first-order rate 
constants of 4.1 ± 0.4 X 10~4 s~' and 4.5 ± 0.1 X 10~4 s~', 
respectively).13 Thus, a direct bimolecular reaction between 
TPPO and diphenylketene does not occur. The ozonide instead 
undergoes a unimolecular decomposition which produces an 
oxidizing agent. That this active species is singlet oxygen is 
required by the following observations: (a) reaction between 
TPPO and ketenes occurs at a significant rate only at or above 
temperatures (~>—30 0C) for which TPPO is known to un­
dergo decomposition to yield 1O2; (b) the a-peroxylactones 
listed in Table I are also produced at —78 0C by photooxyge­
nation; (c) the formation of 9,10-dimethylanthracene endo-
peroxide (by reaction of 9,10-dimethylanthracene with TPPO) 
is strongly quenched by diphenylketene;14 (d) the yields of 
a-peroxylactones parallel the order based on singlet oxygen 
lifetimes;15 (e) reaction of ketenes with 3O2 is negligible under 
our reaction conditions.16 

The reaction of singlet oxygen and ethylenes to form diox-
etanes is often viewed as proceeding via a perepoxide and/or 
zwitterion precursor.17 In an attempt to'establish whether 
reaction 1 (where O2 is now understood to imply 1O2) proceeds 
via trappable intermediates, the reactions of dimethylketene 
and of diphenylketene with TPPO in the presence OfCH3OH 
were studied. Indeed, when CH3OH is present, a-peroxylac­
tone formation is completely suppressed18 and a-methoxy-
peracetic acids (eq 3) are produced. The same situationobtains 
for photooxygenation of dimethyl- or diphenylketenes at —78 
°C. Since it was found that the a-peroxylactones (and the 
peresters formed from autoxidation) are stable to methanol 
under the reaction conditions, we conclude that methanol has 
intercepted a precursor to the a-peroxylactone (e.g., the per­
epoxide 4 or zwitterion 5 in eq 4). 

In conclusion, the reaction of ketenes and TPPO represents 
a novel' and direct synthesis of a-peroxylactones which may 
be conveniently purified by distillation and studied in inert 
solvents systems. The reaction mechanism involves generation 
of' O2 from TPPO followed by attack of' O2 on the ketene to 
produce a perepoxide 4 (and/or zwitterion 5) intermediate that 
collapses to a-peroxylactone in inert solvents or may be trapped 
by methanol to yield a-methoxyperacetic acid derivatives. 
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Electrochemistry of Some Surface-Bonded 
Pyrazoline Derivatives 

Sir: 

Since the first report by Murray et al.1 on the success of 
chemically modifying a metal oxide electrode by covalently 
attaching reagents, other laboratories,2'3 have shown interest 
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